1
IIT-JEE 1987
MCQ (Single Correct Answer)
+2
-0.5
The number of all possible triplets $$\left( {{a_1},\,{a_2},\,{a_3}} \right)$$ such that $${a_1} + {a_2}\,\,\cos \left( {2x} \right) + {a_3}{\sin ^2}\left( x \right) = 0\,$$ for all $$x$$ is
A
zero
B
one
C
three
D
infinite
2
IIT-JEE 1987
MCQ (Single Correct Answer)
+2
-0.5
If $$a,\,b,\,c,\,d$$ and p are distinct real numbers such that $$$\left( {{a^2} + {b^2} + {c^2}} \right){p^2} - 2\left( {ab + bc + cd} \right)p + \left( {{b^2} + {c^2} + {d^2}} \right) \le 0$$$
then $$a,\,b,\,c,\,d$$
A
are in A. P.
B
are in G P.
C
are in H. P.
D
satisfy $$ab = cd$$
3
IIT-JEE 1987
Subjective
+3
-0
Find the set of all $$x$$ for which $${{2x} \over {\left( {2{x^2} + 5x + 2} \right)}}\, > \,{1 \over {\left( {x + 1} \right)}}$$
4
IIT-JEE 1987
Subjective
+3
-0
Prove by mathematical induction that $$ - 5 - {{\left( {2n} \right)!} \over {{2^{2n}}{{\left( {n!} \right)}^2}}} \le {1 \over {{{\left( {3n + 1} \right)}^{1/2}}}}$$ for all positive integers $$n$$.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12