1
IIT-JEE 1987
MCQ (Single Correct Answer)
+2
-0.5
Let $$f$$ and $$g$$ be increasing and decreasing functions, respectively from $$\left[ {0,\infty } \right)$$ to $$\left[ {0,\infty } \right)$$. Let $$h\left( x \right) = f\left( {g\left( x \right)} \right).$$ If $$h\left( 0 \right) = 0,$$ then $$h\left( x \right) - h\left( 1 \right)$$ is
A
always zero
B
always negative
C
always positive
D
strictly increasing
2
IIT-JEE 1987
Subjective
+4
-0
Find the point on the curve $$\,\,\,4{x^2} + {a^2}{y^2} = 4{a^2},\,\,\,4 < {a^2} < 8$$
that is farthest from the point $$(0, -2)$$.
3
IIT-JEE 1987
Subjective
+6
-0
Evaluate :$$\,\,\int {\left[ {{{{{\left( {\cos 2x} \right)}^{1/2}}} \over {\sin x}}} \right]dx} $$
4
IIT-JEE 1987
Fill in the Blanks
+2
-0
$$f\left( x \right) = \left| {\matrix{ {\sec x} & {\cos x} & {{{\sec }^2}x + \cot x\cos ec\,x} \cr {{{\cos }^2}x} & {{{\cos }^2}x} & {\cos e{c^2}x} \cr 1 & {{{\cos }^2}x} & {{{\cos }^2}x} \cr } } \right|.$$
Then $$\int\limits_0^{\pi /2} {f\left( x \right)dx = .......} $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12