1
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\left| {\matrix{
a & {{a^2}} & {1 + {a^3}} \cr
b & {{b^2}} & {1 + {b^3}} \cr
c & {{c^2}} & {1 + {c^3}} \cr
} } \right| = 0$$ and the vectors
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
2
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C} $$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
3
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A = \left( {1,1,1} \right),\,\,\overrightarrow C = \left( {0,1, - 1} \right)$$ are given vectors, then a vector $$B$$ satifying the equations $$\overrightarrow A \times \overrightarrow B = \overrightarrow {\,C} $$ and $$\overrightarrow A .\overrightarrow B = \overrightarrow {3\,} $$ ..........
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
A box contains $$100$$ tickets numbered $$1, 2, ....., 100.$$ Two tickets are chosen at random. It is given that the maximum number on the two chosen tickets is not more than $$10.$$ The minimum number on them is $$5$$ with probability ........
Paper analysis
Total Questions
Chemistry
23
Mathematics
37
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978