1
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and the vectors
$$\overrightarrow A = \left( {1,a,{a^2}} \right),\,\,\overrightarrow B = \left( {1,b,{b^2}} \right),\,\,\overrightarrow C = \left( {1,c,{c^2}} \right),$$ are non-coplannar, then the product $$abc=$$ .......
2
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C} $$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
3
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$\overrightarrow A = \left( {1,1,1} \right),\,\,\overrightarrow C = \left( {0,1, - 1} \right)$$ are given vectors, then a vector $$B$$ satifying the equations $$\overrightarrow A \times \overrightarrow B = \overrightarrow {\,C} $$ and $$\overrightarrow A .\overrightarrow B = \overrightarrow {3\,} $$ ..........
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
A box contains $$100$$ tickets numbered $$1, 2, ....., 100.$$ Two tickets are chosen at random. It is given that the maximum number on the two chosen tickets is not more than $$10.$$ The minimum number on them is $$5$$ with probability ........
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12