1
IIT-JEE 1985
Fill in the Blanks
+2
-0
From the origin chords are drawn to the circle $${(x - 1)^2} + {y^2} = 1$$. The equation of the locus of the mid-points of these chords is.............
2
IIT-JEE 1985
True or False
+1
-0
No tangent can be drawn from the point (5/2, 1) to the circumcircle of the triangle with vertices $$\left( {1,\sqrt 3 } \right)\,\,\left( {1, - \sqrt 3 } \right),\,\,\left( {3,\sqrt 3 } \right)$$.
3
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\left( a \right) = {h_r}\left( a \right),r = 1,2,3$$
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $$f\left( x \right) = {\log _x}\left( {In\,x} \right),$$ then $$f'\left( x \right)$$ at $$x=e$$ is ................
Paper analysis
Total Questions
Chemistry
23
Mathematics
37
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978