1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
The value of the counter integral $$$\int\limits_{\left| {z - j} \right| = 2} {{1 \over {{z^2} + 4}}\,} dz\,\,in\,the\,positive\,sense\,is$$$
A
$${{j\pi } \over 2}$$
B
$${{ - \pi } \over 2}$$
C
$${{ - j\pi } \over 2}$$
D
$${\pi \over 2}$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
For the differential equation $${{{d^2}y} \over {d{x^2}}} + {k^2}y = 0,$$ the boundary conditions are
(i) $$y=0$$ for $$x=0$$ and
(ii) $$y=0$$ for $$x=a$$
The form of non-zero solution of $$y$$ (where $$m$$ varies over all integrals ) are
A
$$y = \sum\limits_m {{A_m}\sin \left( {{{m\pi x} \over a}} \right)} $$
B
$$y = \sum\limits_m {{A_m}\cos \left( {{{m\pi x} \over a}} \right)} $$
C
$$y = \sum\limits_m {{A_m}\,\,{X^{{{m\pi x} \over a}}}} $$
D
$$y = \sum\limits_m {{A_m}\,\,{e^{{{m\pi x} \over a}}}} $$
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by

Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$

Eigen vector
$${V_1} = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$
$${V_2} = \left[ {\matrix{ 1 \cr -1 \cr } } \right]$$

The matrix is

A
$$\left[ {\matrix{ 6 & 2 \cr 2 & 6 \cr } } \right]$$
B
$$\left[ {\matrix{ 4 & 6 \cr 6 & 4 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 4 \cr 4 & 2 \cr } } \right]$$
D
$$\left[ {\matrix{ 4 & 8 \cr 8 & 4 \cr } } \right]$$
4
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
The rank of the matrix $$\left[ {\matrix{ 1 & 1 & 1 \cr 1 & { - 1} & 0 \cr 1 & 1 & 1 \cr } } \right]$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12