1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
In the system shown below, x(t)=(sin t). In steady-state, the response y(t) will be GATE ECE 2006 Control Systems - Frequency Response Analysis Question 58 English
A
$${1 \over {\sqrt 2 }}\sin \left( {t - {\pi \over 4}} \right)$$
B
$${1 \over {\sqrt 2 }}\sin \left( {t + {\pi \over 4}} \right)$$
C
$${1 \over {\sqrt 2 }}{e^{ - t}}\sin t$$
D
$$\sin t - \cos t$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider two transfer functions $${G_1}\left( s \right) = {1 \over {{s^2} + as + b}}$$ and $${G_2}\left( s \right) = {s \over {{s^2} + as + b}}.$$ The 3-dB bandwidths of their frequency responses are, respectively
A
$$\sqrt {{a^2} - 4b,} $$ $$\sqrt {{a^2} + 4b,} $$
B
$$\sqrt {{a^2} - 4b,} $$ $$\sqrt {{a^2} - 4b,} $$
C
$$\sqrt {{a^2} + 4b,} $$ $$\sqrt {{a^2} - 4b,} $$
D
$$\sqrt {{a^2} + 4b,} $$ $$\sqrt {{a^2} + 4b,} $$
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The Nyquist plot of G(jω)H(jω) for a closed loop control system, passes through (-1,j0) point in the GH plane. The gain margin of the system in dB is equal to
A
infinite
B
greater than zero
C
less than zero
D
zero
4
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider a unity-gain feedback control system whose open-loop transfer function is G(s)=$${{as + 1} \over {{s^2}}}$$.

With the value of "a" set for phase-margin of $$\pi $$/4, the value of unit-impulse response of the open-loop system at t = 1 second is equal to

A
3.40
B
2.40
C
1.84
D
1.74
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12