1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
A low-pass filter having a frequency response $$H(j\omega )$$ = $$A(\omega ){e^{j\Phi (\omega )}}$$, does not product any phase distortion if
A
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K{\omega ^3}$$
B
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K\omega $$
C
$$A(\omega ) = C\omega ,\,\,\phi (\omega ) = K{\omega ^2}$$
D
$$A(\omega ) = C,\,\,\phi (\omega ) = K{\omega ^{ - 1}}$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The minimum sampling frequency (in samples /sec) required to reconstruct the following signal from its samples without distortion $$x(t) = 5{\left( {{{\sin \,\,2\,\pi \,1000\,t)} \over {\pi \,t}}} \right)^3} + 7{\left( {{{\sin \,\,2\,\pi \,1000\,t} \over {\pi \,t}}} \right)^2}$$

would be

A
$$2 \times {10^3}$$
B
$$4 \times {10^3}$$
C
$$6 \times {10^3}$$
D
$$8 \times {10^3}$$
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
A signal m(t) with bandwidth 500 Hz is first multiplied by a signal g(t) where $$g(t)\, = \,\,\sum\limits_{k = - \infty }^\infty {{{( - 10)}^k}\,\delta (t - 0.5x{{10}^{ - 4}}k)} $$
The resulting signal is then passed through an ideal low pass filter with bandwidth 1 kHz. The output of the low pass filter would be
A
$${\delta (t)}$$
B
m(t)
C
0
D
m(t) $${\delta (t)}$$
4
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
A solution for the differential equation $$\mathop x\limits^. $$(t) + 2 x (t) = $$\delta (t)$$ with intial condition $$x({0^ - }) = 0$$ is
A
$${e^{ - 2t}}\,u(t)$$
B
$${e^{2t}}\,u(t)$$
C
$${e^{ - t}}\,u(t)$$
D
$${e^t}\,u(t)$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12