Three equal charges '$$\mathrm{q}_1$$', '$$^{\prime} \mathrm{q}_2$$' and '$$\mathrm{q}_3$$' are placed on the three corners of a square of side 'a'. If the force between $$\mathrm{q}_1$$ and $$\mathrm{q}_2$$ is '$$\mathrm{F}_{12}$$' and that between $$\mathrm{q}_1$$ and $$\mathrm{q}_3$$ is '$$\mathrm{F}_{13}$$', then the ratio of magnitudes $$\left(\frac{F_{12}}{F_{13}}\right)$$ is
Three charges each of $$+1 \mu \mathrm{C}$$ are placed at the corners of an equilateral triangle. If the repulsive force between any two charges is $$\mathrm{F}$$, then the net force on either charge will be [$$\cos 60^{\circ}=0.5$$]
Four electric charges $$+\mathrm{q},+\mathrm{q},-\mathrm{q}$$ and $$-\mathrm{q}$$ are placed in order at the corners of a square of side $$2 \mathrm{~L}$$. The electric potential at point midway between the two positive charges is
The electric field intensity on the surface of a charged solid sphere of radius '$$r$$' and volume charge dentiy '$$\rho$$' is given by ($$\epsilon_0=$$ permittivity of free space)