1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two soap bubbles having radii ' $r_1$ ' and ' $r_2$ ' has inside pressure ' $P_1$ ' and ' $\mathrm{P}_2$ ' respectively. If $\mathrm{P}_0$ is external pressure then ratio of their volume is

A
$\frac{\left(\mathrm{P}_1-\mathrm{P}_0\right)}{\left(\mathrm{P}_2-\mathrm{P}_0\right)}$
B
$\frac{\left(\mathrm{P}_2-\mathrm{P}_0\right)}{\left(\mathrm{P}_1-\mathrm{P}_0\right)}$
C
$\frac{\left(P_2-P_0\right)^3}{\left(P_1-P_0\right)^3}$
D
$\frac{\left(\mathrm{P}_1-\mathrm{P}_0\right)^3}{\left(\mathrm{P}_2-\mathrm{P}_0\right)^3}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two metal spheres are falling through a liquid of density $2.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ with the same uniform speed. The density of material of first sphere and second sphere is $11.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ and $8.5 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$ respectively. The ratio of the radius of first sphere to that of second sphere is

A
$\frac{2}{3}$
B
$\sqrt{\frac{2}{3}}$
C
$\frac{3}{2}$
D
$\sqrt{\frac{3}{2}}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A glass capillary of radius 0.35 mm is inclined at $60^{\circ}$ with the vertical in water. The height of the water column in the capillary is (surface tension of water $=7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$, acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^2, \cos 0^{\circ}=1, \cos 60^{\circ}=0.5$ )

A
6 cm
B
8 cm
C
10 cm
D
12 cm
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A closed pipe containing a liquid showed a pressure $P_1$ by gauge. When the valve was opened, pressure was reduced to $\mathrm{P}_2$. The speed of water flowing out of the pipe is ($\rho=$ density of water)

A
$\left[\frac{4\left(\mathrm{P}_1-\mathrm{P}_2\right)}{\rho}\right]^{1 / 2}$
B
$\left[\frac{4\left(P_2-P_1\right)}{\rho}\right]^{1 / 2}$
C
$\left[\frac{2\left(\mathrm{P}_1-\mathrm{P}_2\right)}{\rho}\right]^{1 / 2}$
D
$\left[\frac{2\left(\mathrm{P}_2-\mathrm{P}_1\right)}{\rho}\right]^{1 / 2}$
MHT CET Subjects
EXAM MAP