1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A lead sphere of mass ' $m$ ' falls in viscous liquid with terminal velocity $\mathrm{V}_0$. Another lead sphere of mass ' 8 m ' but of same material will fall through the same liquid with terminal velocity

A
$\mathrm{V}_0$
B
$8 \mathrm{V}_0$
C
$\mathrm{4 V_0}$
D
$64 \mathrm{~V}_0$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A big water drop is formed by the combination of ' $n$ ' small water droplets of equal radii. The ratio of the surface energy of ' $n$ ' droplets to the surface energy of the big drop is

A
$\sqrt{\mathrm{n}}: 1$
B
$\sqrt[3]{\mathrm{n}}: 1$
C
$\mathrm{n}: 1$
D
$\mathrm{n}^2: 1$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Water rises in a capillary tube of radius ' $r$ ' up to height ' $h$ '. The mass of water in capillary is ' $m$ '. The mass of water that will rise in capillary of radius $\mathrm{r} / 3$ will be

A
m
B
$\frac{\mathrm{m}}{3}$
C
$\frac{m}{6}$
D
$\frac{\mathrm{m}}{9}$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The work done in blowing a soap bubble of radius $R$ is $W_1$ at room temperature. Now the soap solution is heated. From the heated solution another soap bubble of radius 2 R is blown and the work done is $\mathrm{W}_2$. Then

A
$\mathrm{W}_2=0$
B
$\mathrm{W}_2=4 \mathrm{~W}_1$
C
$\mathrm{W}_2<4 \mathrm{~W}_1$
D
$\mathrm{W}_2=\mathrm{W}_1$
MHT CET Subjects
EXAM MAP