1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A capillary tube when immersed vertically in water, the rise of water column is upto height $h_1$ on earth's surface. When this arrangement is taken into a mine of depth 'd', below earth's surface, the height of the water column is $\mathrm{h}_2$. If R is the radius of the earth, the ratio $\frac{\mathrm{h}_2}{\mathrm{~h}_1}$ is

A
$\frac{R+d}{R}$
B
$\frac{\mathrm{R}-\mathrm{d}}{\mathrm{R}}$
C
$\frac{R}{R+d}$
D
$\frac{R}{R-d}$
2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

125 small water drops of same size fall through air with constant velocity $4 \mathrm{~cm} / \mathrm{s}$. They coalesce to form a big drop. The terminal velocity of the big drop is

A
$0.5 \mathrm{~m} / \mathrm{s}$
B
$1 \mathrm{~m} / \mathrm{s}$
C
$1.5 \mathrm{~m} / \mathrm{s}$
D
$2.5 \mathrm{~m} / \mathrm{s}$
3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $R_1, R_2$ and $R_3$ be the radii of three mercury drops. A big mercury drop is formed from them under isothermal conditions. The radius of the resultant drop is

A
$\left(R_1^3+R_2^3+R_3^3\right)^{\frac{1}{3}}$
B
$\left(R_1^2+R_2^3-R_3^3\right)^{\frac{1}{3}}$
C
$\quad\left(R_1^3+R_2^3+R_3^3\right)$
D
$\left(R_1+R_2+R_3\right)^3$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross-sectional area is $10 \mathrm{~cm}^2$, the velocity of water is $1 \mathrm{~m} / \mathrm{s}$ and pressure is 2000 Pa . The pressure of water at another point where the cross-sectional area $5 \mathrm{~cm}^2$ is

[Given $\rightarrow$ density of water $=1000 \mathrm{~kg} / \mathrm{m}^3$ ]

A
1000 Pa
B
750 Pa
C
500 Pa
D
250 Pa
MHT CET Subjects
EXAM MAP