Under isothermal conditions, two soap bubbles of radii '$$r_1$$' and '$$r_2$$' combine to form a single soap bubble of radius '$$R$$'. The surface tension of soap solution is ( $$P=$$ outside pressure)
In a capillary tube having area of cross-section A, water rises to a height 'h'. If cross-sectional area is reduced to $$\frac{A}{9}$$, the rise of water in the capillary tube is
Water rises upto a height $$10 \mathrm{~cm}$$ in a capillary tube. It will rise to a height which is much more than $$10 \mathrm{~cm}$$ in a very long capillary tube if the apparatus is kept.
A big water drop is divided into 8 equal droplets. $$\Delta \mathrm{P}_{\mathrm{s}}$$ and $$\Delta \mathrm{P}_{\mathrm{B}}$$ be the excess pressure inside a smaller and bigger drop respectively. The relation between $$\Delta \mathrm{P}_{\mathrm{s}}$$ and $$\Delta \mathrm{P}_{\mathrm{B}}$$ is