1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) \rightarrow(p \vee \sim q)$ and $(p \wedge \sim q) \rightarrow(\sim p \wedge q)$ are respectively

A
$\mathrm{T, F}$
B
$\mathrm{F}, \mathrm{T}$
C
$\mathrm{T}, \mathrm{T}$
D
$\mathrm{F, F}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The statement $\sim(p \leftrightarrow \sim q)$ is

A
equivalent to $\mathrm{p} \leftrightarrow \mathrm{q}$
B
a fallacy
C
a tautology
D
equivalent to $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

A
There is a rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
B
There is no rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
C
Every rational number $x \in S$ satisfies $x \leq 0$.
D
$x \in \mathrm{~S}$ and $x \leq 0 \Rightarrow x$ is not a rational number.
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12