1
MHT CET 2023 9th May Morning Shift
+2
-0

If truth values of statements $$\mathrm{p}, \mathrm{q}$$ are true, and $$\mathrm{r}$$, $$s$$ are false, then the truth values of the following statement patterns are respectively

\begin{aligned} & \mathrm{a}: \sim(\mathrm{p} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{q} \vee \mathrm{s}) \\ & \mathrm{b}:(\sim \mathrm{q} \wedge \sim \mathrm{r}) \leftrightarrow(\mathrm{p} \vee \mathrm{s}) \\ & \mathrm{c}:(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s}) \end{aligned}

A
$$\mathrm{T}, \mathrm{F}, \mathrm{F}$$
B
F, F, F
C
F, T, T
D
$$\mathrm{T}, \mathrm{F}, \mathrm{T}$$
2
MHT CET 2023 9th May Morning Shift
+2
-0

The negation of the statement $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

A
$$p \vee q \vee \sim r$$
B
$$\mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}$$
C
$$\sim p \vee q \wedge r$$
D
$$\sim p \vee \sim q \vee \sim r$$
3
MHT CET 2021 21th September Evening Shift
+2
-0

The logical statement (p $$\to$$ q) $$\wedge$$ (q $$\to$$ ~p) is equivalent to

A
~p
B
p
C
q
D
~q
4
MHT CET 2021 21th September Evening Shift
+2
-0

If p $$\to$$ (~p $$\vee$$ q) is false, then the truth values of p and q are, respectively

A
T, F
B
F, F
C
F, T
D
T, T
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination