Given $$\mathrm{p}$$ : A man is a judge, $$\mathrm{q}$$ : A man is honest
If $$\mathrm{S} 1$$ : If a man is a judge, then he is honest
S2 : If a man is a judge, then he is not honest
S3 : A man is not a judge or he is honest Then
S4 : A man is a judge and he is honest
The statement pattern $$(p \wedge q) \wedge[(p \wedge q) \vee(\sim p \wedge q)]$$ is equivalent to
Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$.
If the truth values of $$p$$ and $$q$$ are true and that of $$r$$ and $$s$$ are false, then the truth values of $$a$$ and $$b$$ are respectively
If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{r} \wedge \mathrm{s})$$ and $$(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \leftrightarrow \mathrm{s})$$ are respectively.