1
MHT CET 2021 20th September Evening Shift
+2
-0

p : It rains today

q : I am going to school

r : I will meet my friend

s : I will go to watch a movie.

Then symbolic form of the statement "If it does not rain today or I won't go to school, then I will meet my friend and I will go to watch a movie" is

A
$$\mathrm{\sim(p\vee q)\to (r \vee s)}$$
B
$$\mathrm{(p\wedge q)\to (r \vee s)}$$
C
$$\mathrm{\sim(p\wedge q)\to (r \wedge s)}$$
D
$$\mathrm{(\sim p\wedge q)\to (r \wedge s)}$$
2
MHT CET 2021 20th September Evening Shift
+2
-0

Negation of $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

A
$$p \vee q \vee(\sim r)$$
B
$$p \wedge q \wedge r$$
C
$$\sim p \wedge q \wedge r$$
D
$$p \wedge q \wedge(\sim r)$$
3
MHT CET 2021 20th September Morning Shift
+2
-0

The negation of a statement 'x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A and x $$\in$$ B)' is

A
x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A or x $$\in$$ B)
B
x $$\in$$ A $$\cap$$ B and (x $$\notin$$ A or x $$\notin$$ B)
C
x $$\in$$ A $$\cap$$ B or (x $$\in$$ A or x $$\in$$ B)
D
x $$\notin$$ A $$\cap$$ B and (x $$\in$$ A and x $$\in$$ B)
4
MHT CET 2021 20th September Morning Shift
+2
-0

The logical expression $$\mathrm{p} \wedge(\sim \mathrm{p} \vee \sim \mathrm{q}) \equiv$$

A
$$p \vee q$$
B
$$p \wedge q$$
C
F
D
T
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination