1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

A
There is a rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
B
There is no rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
C
Every rational number $x \in S$ satisfies $x \leq 0$.
D
$x \in \mathrm{~S}$ and $x \leq 0 \Rightarrow x$ is not a rational number.
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The contrapositive of the inverse of $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is

A
$(\sim p \wedge q) \rightarrow p$
B
$(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
C
$\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$
D
$(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If p : The total prime numbers between 2 to 100 are 26.

q : Zero is a complex number.

$r$ : Least common multiple (L.C.M.) of 6 and 7 is 6 .

Then which of the following is correct?

A
$(p \wedge q) \rightarrow r$ has truth value False.
B
$(p \rightarrow q) \rightarrow r$ has truth value True.
C
$(p \vee q) \leftrightarrow r$ has truth value False.
D
$(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$ has truth value True.
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12