1
MHT CET 2023 11th May Morning Shift
+2
-0

The statement pattern $$\mathrm{p} \rightarrow \sim(\mathrm{p} \wedge \sim \mathrm{q})$$ is equivalent to

A
$$\mathrm{q}$$
B
$$(\sim p) \vee q$$
C
$$(\sim p) \wedge q$$
D
$$(\sim p) \vee(\sim q)$$
2
MHT CET 2023 10th May Evening Shift
+2
-0

If $$\mathrm{p}$$ and $$\mathrm{q}$$ are true statements and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false statements, then the truth values of the statement patterns $$(p \wedge q) \vee r$$ and $$(\mathrm{p} \vee \mathrm{s}) \leftrightarrow(\mathrm{q} \wedge \mathrm{r})$$ are respectively

A
F, T
B
$$\mathrm{T}, \mathrm{T}$$
C
F, F
D
$$\mathrm{T}, \mathrm{F}$$
3
MHT CET 2023 10th May Evening Shift
+2
-0

The negation of the statement pattern $$\sim s \vee(\sim r \wedge s)$$ is equivalent to

A
$$s \wedge r$$
B
$$s \wedge(r \wedge \sim s)$$
C
$$s \wedge \sim r$$
D
$$s \vee(r \vee \sim s)$$
4
MHT CET 2023 10th May Morning Shift
+2
-0

The logical statement $$[\sim(\sim p \vee q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$$ is equivalent to

A
$$(p \wedge r) \wedge \sim q$$
B
$$(p \wedge \sim q) \vee r$$
C
$$\quad \sim \mathrm{p} \vee \mathrm{r}$$
D
$$\sim p \wedge r$$
EXAM MAP
Medical
NEET