1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\sqrt{3} \cot 20^{\circ}-4 \cos 20^{\circ}$ is equal to

A
1
B
-1
C
0
D
$\frac{1}{2}$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A+B=\frac{\pi}{2}$ then the maximum value of $\cos \mathrm{A} \cdot \cos \mathrm{B}$ is

A
$\frac{1}{\sqrt{2}}$
B
$\frac{1}{2}$
C
$-\frac{1}{2}$
D
$-\frac{1}{\sqrt{2}}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and $\tan \mathrm{C}=\sqrt{x^{-1}+x^{-2}+x^{-3}}$ then

A
$\mathrm{A}+\mathrm{B}=\mathrm{C}$
B
$A+B=2 C$
C
$A+B=3 C$
D
$A+B=4 C$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If triangle ABC is a right angled at A and $\tan \frac{\mathrm{B}}{2}$, $\tan \frac{\mathrm{C}}{2}$ are roots of the equation $a x^2+b x+c=0$, $\mathrm{a} \neq 0$, then

A
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
B
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
C
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
D
$a+c=2 b$
MHT CET Subjects
EXAM MAP