1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}+\mathrm{B}=225^{\circ}$, then $\frac{\cot \mathrm{A}}{1+\cot \mathrm{A}} \cdot \frac{\cot \mathrm{B}}{1+\cot \mathrm{B}}$, if it exists, is equal to

A
0
B
1
C
2
D
$\frac{1}{2}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cos \left(18^{\circ}+\mathrm{A}\right) -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is equal to }\end{aligned}$

A
$\cos 54^{\circ}$
B
$\cos 36^{\circ}$
C
$\sin 54^{\circ}$
D
$\sin 36^{\circ}$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \cos ^3\left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)+\sin ^3\left(\frac{\pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)=$$

A
$\frac{1}{2 \sqrt{2}}$
B
$\frac{1}{\sqrt{2}}$
C
$\frac{1}{2}$
D
$\frac{\sqrt{3}}{2}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ equals

A
$2(\tan \beta+\tan \gamma)$
B
$\tan \beta+\tan \gamma$
C
$\tan \beta+2 \tan \gamma$
D
$2 \tan \beta+\tan \gamma$
MHT CET Subjects
EXAM MAP