1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \cos ^3\left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)+\sin ^3\left(\frac{\pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)=$$

A
$\frac{1}{2 \sqrt{2}}$
B
$\frac{1}{\sqrt{2}}$
C
$\frac{1}{2}$
D
$\frac{\sqrt{3}}{2}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ equals

A
$2(\tan \beta+\tan \gamma)$
B
$\tan \beta+\tan \gamma$
C
$\tan \beta+2 \tan \gamma$
D
$2 \tan \beta+\tan \gamma$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}>\mathrm{B}$ and $\tan \mathrm{A}-\tan \mathrm{B}=x$ and $\cot \mathrm{B}-\cot \mathrm{A}=y$, then $\cot (\mathrm{A}-\mathrm{B})=$

A
$\frac{1}{y}-\frac{1}{x}$
B
$\frac{1}{x}-\frac{1}{y}$
C
$\frac{1}{x}+\frac{1}{y}$
D
$\frac{x y}{x-y}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

A
2
B
$\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
C
4
D
$4 \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
MHT CET Subjects
EXAM MAP