1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\cos \left(59^{\circ} 30^{\prime}\right)$ is (given $1^{\circ}=0.0175^{\mathrm{c}}, \sin 60^{\circ}=0.8660$ )

A
0.5076
B
0.5176
C
0.5256
D
0.5150
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\sqrt{3} \cot 20^{\circ}-4 \cos 20^{\circ}$ is equal to

A
1
B
-1
C
0
D
$\frac{1}{2}$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A+B=\frac{\pi}{2}$ then the maximum value of $\cos \mathrm{A} \cdot \cos \mathrm{B}$ is

A
$\frac{1}{\sqrt{2}}$
B
$\frac{1}{2}$
C
$-\frac{1}{2}$
D
$-\frac{1}{\sqrt{2}}$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and $\tan \mathrm{C}=\sqrt{x^{-1}+x^{-2}+x^{-3}}$ then

A
$\mathrm{A}+\mathrm{B}=\mathrm{C}$
B
$A+B=2 C$
C
$A+B=3 C$
D
$A+B=4 C$
MHT CET Subjects
EXAM MAP