1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)$ is

A
$\frac{1}{8}$
B
$\frac{-1}{8}$
C
$\frac{1}{16}$
D
$\frac{-1}{16}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $2 \sin ^2 x+3 \sin x-2>0$ and $x^2-x-2<0$ ($x$ is measured in radians). Then $x$ lies in the interval

A
$\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
B
$\left(-1, \frac{5 \pi}{6}\right)$
C
$(-1,2)$
D
$\left(\frac{\pi}{6}, 2\right)$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of integral values of $k$, for which the equation $7 \cos x+5 \sin x=2 \mathrm{k}+1$ has a solution, is

A
4
B
8
C
10
D
2
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The smallest positive value of $x$ in degrees satisfying the equation $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)$ is

A
$30^{\circ}$
B
$15^{\circ}$
C
$45^{\circ}$
D
$60^{\circ}$
MHT CET Subjects
EXAM MAP