1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and $\tan \mathrm{C}=\sqrt{x^{-1}+x^{-2}+x^{-3}}$ then

A
$\mathrm{A}+\mathrm{B}=\mathrm{C}$
B
$A+B=2 C$
C
$A+B=3 C$
D
$A+B=4 C$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If triangle ABC is a right angled at A and $\tan \frac{\mathrm{B}}{2}$, $\tan \frac{\mathrm{C}}{2}$ are roots of the equation $a x^2+b x+c=0$, $\mathrm{a} \neq 0$, then

A
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
B
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
C
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
D
$a+c=2 b$
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $3 \sin \alpha=5 \sin \beta$, then $\tan \left(\frac{\alpha+\beta}{2}\right)+\tan \left(\frac{\alpha-\beta}{2}\right)=$
A
1
B
2
C
3
D
4
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
MHT CET Subjects
EXAM MAP