1
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $3 \sin \alpha=5 \sin \beta$, then $\tan \left(\frac{\alpha+\beta}{2}\right)+\tan \left(\frac{\alpha-\beta}{2}\right)=$
A
1
B
2
C
3
D
4
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\left(\cos \alpha_1\right) \cdot\left(\cos \alpha_2\right) \ldots .\left(\cos \alpha_n\right)$ under the constraints $0 \leq \alpha_1, \alpha_2, \ldots ., \alpha_n \leq \frac{\pi}{2}$ and $\left(\cot \alpha_1\right) \cdot\left(\cot \alpha_2\right) \ldots\left(\cot \alpha_n\right)=1$ is

A
$\frac{1}{2^{\left(\frac{n}{2}\right)}}$
B
$\frac{1}{2^n}$
C
$2^n$
D
$2^{\frac{n}{2}}$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}+\mathrm{B}=225^{\circ}$, then $\frac{\cot \mathrm{A}}{1+\cot \mathrm{A}} \cdot \frac{\cot \mathrm{B}}{1+\cot \mathrm{B}}$, if it exists, is equal to

A
0
B
1
C
2
D
$\frac{1}{2}$
MHT CET Subjects
EXAM MAP