1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int_\limits{\sqrt{\log _{\mathrm{e}}}}^{\sqrt{\log _{\mathrm{e}} 3}} \frac{x \sin x^2}{\sin x^2+\sin \left(\log _{\mathrm{e}} 6-x^2\right)} d x$ is

A
$\frac{1}{4} \log _{\mathrm{e}} \frac{3}{2}$
B
$\frac{1}{2} \log _e \frac{3}{2}$
C
$ \log _e \frac{3}{2}$
D
$\frac{1}{6} \log _{\mathrm{e}} \frac{3}{2}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ and $g$ be continuous functions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$, then $\int_0^a f(x) g(x) d x$ is equal to

A
$4 \int_\limits0^a f(x) \mathrm{d} x$
B
$\int_\limits0^2 \mathrm{f}(x) \mathrm{d} x$
C
$2 \int_\limits0^2 f(x) \mathrm{d} x$
D
$-3 \int_\limits0^2 f(x) d x$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$I_n=\int_\limits0^{\frac{\pi}{4}} \tan ^n \theta d \theta$$, then $$I_{12}+I_{10}=$$

A
$$\frac{1}{8}$$
B
$$\frac{1}{12}$$
C
$$\frac{1}{11}$$
D
$$\frac{1}{10}$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{\frac{2}{3}} x \operatorname{cosec}^{\frac{4}{3}} x d x$$ is equal to

A
$$3^{\frac{5}{6}}-3^{\frac{2}{3}}$$
B
$$3^{\frac{7}{6}}-3^{\frac{5}{6}}$$
C
$$3^{\frac{5}{3}}-3^{\frac{1}{3}}$$
D
$$3^{\frac{4}{3}}-3^{\frac{1}{3}}$$
MHT CET Subjects
EXAM MAP