1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_1^3 \frac{\log x^2}{\log \left(16 x^2-8 x^3+x^4\right)} d x= $$

A
1
B
3
C
$\quad \log 2$
D
$\frac{1}{2}$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\limits_0^1 \frac{1}{2+\sqrt{x}} d x= $$

A
$2 \log \left(\frac{2 \mathrm{e}}{3}\right)$
B
$2 \log \left(\frac{4 \mathrm{e}}{9}\right)$
C
$\log \left(\frac{2 \mathrm{e}}{3}\right)$
D
$\log \left(\frac{4 e}{9}\right)$
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\limits_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^2+\log \left(\frac{\pi-x}{\pi+x}\right) \cdot \cos x\right) d x= $$

A
0
B
$\frac{\pi^3}{12}$
C
$\frac{\pi^2}{2}-4$
D
$\frac{\pi^2}{2}+4$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^1 \log \left(\frac{1}{x}-1\right) d x= $$

A
$\frac{1}{2}$
B
1
C
2
D
0
MHT CET Subjects
EXAM MAP