1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits0^1 \tan ^{-1}\left(\frac{2 x-1}{1+x-x^2}\right) d x=$

A
2
B
1
C
0
D
4
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The c.d.f, $F(x)$ associated with p.d.f. $f(x)=3\left(1-2 x^2\right)$. If $0< x<1$ is $k\left(x-\frac{2 x^3}{k}\right)$, then value of $k$ is

A
3
B
$\frac{1}{3}$
C
1
D
$\frac{1}{6}$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{2}} \frac{\sqrt[7]{\sin x}}{\sqrt[7]{\sin x}+\sqrt[7]{\cos x}} d x=$$

A
$\frac{\pi}{8}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{2}$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits0^1\left(1-\frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\ldots\right.$ upto $\left.\infty\right) e^{2 x} d x=$

A
$e^2$
B
$e+1$
C
$e$
D
$e-1$
MHT CET Subjects
EXAM MAP