1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=$$

A
$\frac{1}{2}$
B
$\frac{-1}{2}$
C
$\frac{3}{2}$
D
$\frac{-3}{2}$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} \mathrm{dx}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{8}$
D
$2 \pi$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_0^{\frac{\pi}{4}} \frac{\sec ^2 x}{(1+\tan x)(2+\tan x)} d x=$$

A
$\log \left(\frac{3}{4}\right)$
B
$\frac{1}{3} \log \left(\frac{4}{3}\right)$
C
$\log \left(\frac{4}{3}\right)$
D
$\frac{1}{4} \log \left(\frac{3}{4}\right)$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

After $t$ seconds, the acceleration of a particle, which starts from rest and moves in a straight line is $\left(8-\frac{\mathrm{t}}{5}\right) \mathrm{cm} / \mathrm{s}^2$, then velocity of the particle at the instant, when the acceleration is zero, is

A
$160 \mathrm{~cm} / \mathrm{s}$
B
$80 \mathrm{~cm} / \mathrm{s}$
C
$320 \mathrm{~cm} / \mathrm{s}$
D
$480 \mathrm{~cm} / \mathrm{s}$
MHT CET Subjects
EXAM MAP