1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of integral $\int_\limits{-2}^0\left(x^3+3 x^2+3 x+5+(x+1) \cos (x+1)\right) d x$ is equal to

A
0
B
6
C
4
D
1
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{I}=\int_0^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{d} x$, then value of $\mathrm{I}$ is

A
$\frac{\pi}{16} \log 2$
B
$\frac{\pi}{2} \log 2$
C
$\frac{\pi}{8} \log 2$
D
$\frac{\pi}{4} \log 2$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits{0.2}^{3.5}[x] \mathrm{d} x=$$ (where $[x]=$ greatest integer not greater than $x$ )

A
4
B
4.2
C
4.5
D
4.4
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits0^{\frac{\pi}{4}} \log \left(\frac{\sin x+\cos x}{\cos x}\right) d x=$$

A
$\frac{\pi}{2} \log 2$
B
$\frac{\pi}{4} \log 2$
C
$\frac{\pi}{6} \log 2$
D
$\frac{\pi}{8} \log 2$
MHT CET Subjects
EXAM MAP