1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int_2^4 \frac{\log x^2}{\log x^2+\log \left(36-12 x+x^2\right)} \mathrm{d} x$ is equal to

A
1
B
2
C
4
D
6
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int_0^2\left[x^2\right] \mathrm{d} x$ is (where $[x]$ denotes the greatest integer function not greater than $x$ )

A
$5-\sqrt{2}-\sqrt{3}$
B
$5+\sqrt{2}-\sqrt{3}$
C
$5+\sqrt{2}+\sqrt{3}$
D
$5-\sqrt{2}+\sqrt{3}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^3 \frac{d x}{(x+2) \sqrt{x+1}}= $$

A
$\tan ^{-1}\left(\frac{1}{3}\right)$
B
$2 \tan ^{-1}\left(\frac{1}{3}\right)$
C
$3 \tan ^{-1}\left(\frac{1}{3}\right)$
D
$4 \tan ^{-1}\left(\frac{1}{3}\right)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^{\frac{\pi}{2}} \frac{d x}{1+(\cot x)^{101}}= $$

A
$\frac{\pi}{2}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{8}$
D
$\pi$
MHT CET Subjects
EXAM MAP