1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The statement $\sim(p \leftrightarrow \sim q)$ is

A
equivalent to $\mathrm{p} \leftrightarrow \mathrm{q}$
B
a fallacy
C
a tautology
D
equivalent to $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to

A
$\mathrm{p} \wedge(\sim \mathrm{q})$
B
$p \vee(q)$
C
$p \rightarrow(\sim q)$
D
$\mathrm{q} \rightarrow \mathrm{p}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $S$ be a non-empty subset of $\mathbb{R}$. Consider the following statement:

p : There is a rational number $x \in \mathrm{~S}$ such that $x>0$.

Which of the following statements is the negation of the statement p?

A
There is a rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
B
There is no rational number $x \in \mathrm{~S}$ such that $x \leq 0$.
C
Every rational number $x \in S$ satisfies $x \leq 0$.
D
$x \in \mathrm{~S}$ and $x \leq 0 \Rightarrow x$ is not a rational number.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The contrapositive of the inverse of $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$ is

A
$(\sim p \wedge q) \rightarrow p$
B
$(\sim \mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
C
$\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$
D
$(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{p}$
MHT CET Subjects
EXAM MAP