1
MHT CET 2023 12th May Morning Shift
+2
-0

The function $$\mathrm{f}(x)=\sin ^4 x+\cos ^4 x$$ is increasing in

A
$$0 < x < \frac{\pi}{8}$$
B
$$\frac{\pi}{4} < x < \frac{\pi}{2}$$
C
$$\frac{3 \pi}{8} < x < \frac{5 \pi}{8}$$
D
$$\frac{5 \pi}{8} < x < \frac{3 \pi}{4}$$
2
MHT CET 2023 12th May Morning Shift
+2
-0

A ladder 5 meters long rests against a vertical wall. If its top slides downwards at the rate of $$10 \mathrm{~cm} / \mathrm{s}$$, then the angle between the ladder and the floor is decreasing at the rate of ________ rad./s when it's lower end is $$4 \mathrm{~m}$$ away from the wall.

A
$$-0.1$$
B
$$-0.025$$
C
0.1
D
0.025
3
MHT CET 2023 11th May Evening Shift
+2
-0

If the function $$f$$ is given by $$f(x)=x^3-3(a-2) x^2+3 a x+7$$, for some $$\mathrm{a} \in \mathbb{R}$$, is increasing in $$(0,1]$$ and decreasing in $$[1,5)$$, then a root of the equation $$\frac{\mathrm{f}(x)-14}{(x-1)^2}=0(x \neq 1)$$ is

A
$$-$$7
B
6
C
7
D
5
4
MHT CET 2023 11th May Evening Shift
+2
-0

If $$a$$ and $$b$$ are positive number such that $$a>b$$, then the minimum value of $$a \sec \theta-b \tan \theta\left(0 < \theta < \frac{\pi}{2}\right)$$ is

A
$$\frac{1}{\sqrt{a^2-b^2}}$$
B
$$\frac{1}{\sqrt{a^2+b^2}}$$
C
$$\sqrt{a^2+b^2}$$
D
$$\sqrt{a^2-b^2}$$
EXAM MAP
Medical
NEET