1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Three concentric charged metallic spherical sheets $A, B$ and $C$ have radii $a, b, c$ potentials $V_A$, $\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}$ and charge densities $+\sigma,-\sigma$ and $+\sigma$ respectively. The value of potential $\mathrm{V}_{\mathrm{A}}$ is ( $\varepsilon_0=$ permittivity of free space)

A
$\quad \frac{\sigma}{\varepsilon_0}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
B
$\frac{\sigma}{\varepsilon_0}(-\mathrm{a}+\mathrm{b}-\mathrm{c})$
C
$\frac{\sigma}{\varepsilon_0}(\mathrm{a}-\mathrm{b}+\mathrm{c})$
D
$\quad \frac{\sigma}{3 \varepsilon_0}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Three point charges $+Q,+2 Q$ and $q$ are placed at the vertices of an equilateral triangle. The value of charge $q$ in terms of $Q$, so that electrical potential energy of the system is zero, is given by

A
$\mathrm{q}=\frac{1}{3} \mathrm{Q}$
B
$\mathrm{q}=\frac{2}{3} \mathrm{Q}$
C
$\mathrm{q}=-\frac{2}{3} \mathrm{Q}$
D
$\mathrm{q}=-\frac{3}{2} \mathrm{Q}$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A hollow cylinder has a charge of ' $q$ ' $C$ within it. If $\phi$ is the electric flux associated with the curved surface B, the flux linked with the plane surface A will be

MHT CET 2025 20th April Morning Shift Physics - Electrostatics Question 3 English

A
$\frac{\phi}{3}$
B
$\frac{\mathrm{q}}{\varepsilon_0}-\phi$
C
$\frac{\mathrm{q}}{3 \varepsilon_0}$
D
$\quad \frac{1}{2}\left(\frac{\mathrm{q}}{\varepsilon_0}-\phi\right)$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

A conducting sphere of radius ' R ' is given a charge ' $Q$ ' uniformly. The electric field and the electric potential at the centre of the sphere are respectively [ $\varepsilon_0=$ permittivity of free space]

A
zero and $\frac{Q}{4 \pi \varepsilon_0 R}$
B
$\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}^2}$ and zero
C
$\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}}$ and $\frac{\mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{R}^2}$
D
zero and zero
MHT CET Subjects
EXAM MAP