1
MHT CET 2021 21th September Morning Shift
+2
-0

The curves $$\frac{x^2}{a^2}+\frac{y^2}{4}=1$$ and $$y^3=16 x$$ intersect each other orthogonally, then $$a^2=$$

A
2
B
$$\frac{3}{4}$$
C
$$\frac{1}{2}$$
D
$$\frac{4}{3}$$
2
MHT CET 2021 20th September Evening Shift
+2
-0

The surface area of a spherical balloon is increasing at the rate $$2 \mathrm{~cm}^2 / \mathrm{sec}$$. Then rate of increase in the volume of the balloon is , when the radius of the balloon is $$6 \mathrm{~cm}$$.

A
$$4 \mathrm{~cm}^3 / \mathrm{sec}$$.
B
$$16 \mathrm{~cm}^3 / \mathrm{sec}$$.
C
$$36 \mathrm{~cm}^3 / \mathrm{sec}$$.
D
$$6 \mathrm{~cm}^3 / \mathrm{sec}$$.
3
MHT CET 2021 20th September Evening Shift
+2
-0

If $$f(x)=2x^3-15x^2-144x-7$$, then $$f(x)$$ is strictly decreasing in

A
$$(-8,3)$$
B
$$(-3,8)$$
C
$$(3,8)$$
D
$$(-8,-3)$$
4
MHT CET 2021 20th September Evening Shift
+2
-0

The equation of tangent to the circle $$x^2+y^2=64$$ at the point $$\mathrm{P\left(\frac{2\pi}{3}\right)}$$ is

A
$$x-\sqrt3 y-16=0$$
B
$$\sqrt3x+y-16=0$$
C
$$x+\sqrt3y+16=0$$
D
$$x-\sqrt3y+16=0$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination