1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If triangle ABC is a right angled at A and $\tan \frac{\mathrm{B}}{2}$, $\tan \frac{\mathrm{C}}{2}$ are roots of the equation $a x^2+b x+c=0$, $\mathrm{a} \neq 0$, then

A
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
B
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
C
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
D
$a+c=2 b$
2
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $3 \sin \alpha=5 \sin \beta$, then $\tan \left(\frac{\alpha+\beta}{2}\right)+\tan \left(\frac{\alpha-\beta}{2}\right)=$
A
1
B
2
C
3
D
4
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\cos 20^{\circ}+2 \sin ^2 55^{\circ}-\sqrt{2} \sin 65^{\circ}$ is

A
0
B
1
C
$-$1
D
$\frac{1}{2}$
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\left(\cos \alpha_1\right) \cdot\left(\cos \alpha_2\right) \ldots .\left(\cos \alpha_n\right)$ under the constraints $0 \leq \alpha_1, \alpha_2, \ldots ., \alpha_n \leq \frac{\pi}{2}$ and $\left(\cot \alpha_1\right) \cdot\left(\cot \alpha_2\right) \ldots\left(\cot \alpha_n\right)=1$ is

A
$\frac{1}{2^{\left(\frac{n}{2}\right)}}$
B
$\frac{1}{2^n}$
C
$2^n$
D
$2^{\frac{n}{2}}$
MHT CET Subjects
EXAM MAP