1
MHT CET 2021 23th September Morning Shift
+2
-0

Negation of the statement : $$3+6>8$$ and $$2+3<6$$ is

A
$$3+6 \leq 8$$ or $$2+3<6$$
B
$$3+6<8$$ or $$2+3<6$$
C
$$3+6 \leq 8$$ or $$2+3 \geq 6$$
D
$$3+6>8$$ or $$2+3 \geq 6$$
2
MHT CET 2021 22th September Evening Shift
+2
-0

Given $$\mathrm{p}$$ : A man is a judge, $$\mathrm{q}$$ : A man is honest

If $$\mathrm{S} 1$$ : If a man is a judge, then he is honest

S2 : If a man is a judge, then he is not honest

S3 : A man is not a judge or he is honest Then

S4 : A man is a judge and he is honest

A
$$\mathrm{S}_2 \equiv \mathrm{S}_3$$
B
$$\mathrm{S_1 \equiv S_2}$$
C
$$\mathrm{S_2 \equiv S_4}$$
D
$$\mathrm{S}_1 \equiv \mathrm{S}_3$$
3
MHT CET 2021 22th September Evening Shift
+2
-0

The statement pattern $$(p \wedge q) \wedge[(p \wedge q) \vee(\sim p \wedge q)]$$ is equivalent to

A
$$q$$
B
$$p \wedge q$$
C
$$\mathrm{p}$$
D
$$p \vee q$$
4
MHT CET 2021 22th September Evening Shift
+2
-0

Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$.

If the truth values of $$p$$ and $$q$$ are true and that of $$r$$ and $$s$$ are false, then the truth values of $$a$$ and $$b$$ are respectively

A
T, F
B
T, T
C
F, F
D
F, T
EXAM MAP
Medical
NEET