1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $p, q, r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(\sim q \vee r)$ is $F$. Then the truth values of $p, q, r$ are respectively

A
$\mathrm{T, F, T.}$
B
$\mathrm{T}, \mathrm{T}, \mathrm{T}$.
C
$\mathrm{F, T, F.}$
D
$\mathrm{T, T, F.}$
2
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The converse of $[p \wedge(\sim q)] \rightarrow r$ is

A
$\sim \mathrm{r} \rightarrow(\sim \mathrm{p} \vee \mathrm{q})$
B
$\mathrm{r} \rightarrow(\sim \mathrm{p} \wedge \sim \mathrm{q})$
C
$(\sim p \vee q) \rightarrow \sim r$
D
$\mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
3
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the statements $p, q$ and $r$ have the truth values $\mathrm{F}, \mathrm{T}, \mathrm{F}$ respectively, then the truth values of the statement patterns $(p \wedge \sim q) \rightarrow r$ and $(p \vee q) \rightarrow r$ are respectively

A
$\mathrm{T}, \mathrm{T}$
B
$\mathrm{T}, \mathrm{F}$
C
$F, T$
D
$F, F$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The statement pattern $[p \wedge(q \vee r)] \vee[\sim r \wedge \sim q \wedge p]$ is equivalent to

A
$q \vee r$
B
$\mathrm{p} \vee \mathrm{r}$
C
$q$
D
$p$
MHT CET Subjects
EXAM MAP