1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}(x)$$ be positive for all real $$x$$. If $$\mathrm{I}_1=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} x \mathrm{f}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{1-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(x(1-x)) \mathrm{d} x$$, where $$(2 h-1)>0$$, then $$\frac{I_1}{I_2}$$ is

A
2
B
$$\mathrm{h}$$
C
$$\frac{1}{2}$$
D
1
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits{-1}^3\left(\cot ^{-1}\left(\frac{x}{x^2+1}\right)+\cot ^{-1}\left(\frac{x^2+1}{x}\right)\right) \mathrm{d} x=$$

A
$$\left(\frac{\pi}{4}\right)$$
B
$$\pi$$
C
$$\left(\frac{\pi}{2}\right)$$
D
$$(2 \pi)$$
3
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ and $$\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$$ be continuous functions. Then the value of the integral $$\int_\limits{\frac{-\pi}{2}}^{\frac{\pi}{2}}[\mathrm{f}(x)+\mathrm{f}(-x)][\mathrm{g}(x)-\mathrm{g}(-x)] \mathrm{d} x$$ is

A
$$\pi$$
B
1
C
$$-1$$
D
0
4
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits 0^\pi \frac{x \tan x}{\sec x+\cos x} d x= $$

A
$$\frac{\pi}{8}$$
B
$$-\frac{\pi^2}{8}$$
C
$$\frac{\pi^2}{4}$$
D
$$-\frac{\pi^2}{4}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12