1
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$a: \sim(p \wedge \sim r) \vee(\sim q \vee s)$$ and $$b:(p \vee s) \leftrightarrow(q \wedge r)$$.

If the truth values of $$p$$ and $$q$$ are true and that of $$r$$ and $$s$$ are false, then the truth values of $$a$$ and $$b$$ are respectively

A
T, F
B
T, T
C
F, F
D
F, T
2
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If statements $$\mathrm{p}$$ and $$\mathrm{q}$$ are true and $$\mathrm{r}$$ and $$\mathrm{s}$$ are false, then truth values of $$\sim(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\mathrm{r} \wedge \mathrm{s})$$ and $$(\sim \mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \leftrightarrow \mathrm{s})$$ are respectively.

A
$$\mathrm{F}, \mathrm{F}$$
B
T, T
C
T, F
D
F, T
3
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The expression $$[(p \wedge \sim q) \vee q] \vee(\sim p \wedge q)$$ is equivalent to

A
$$p \vee q$$
B
$$p \wedge q$$
C
$$p \rightarrow q$$
D
$$p \leftrightarrow q$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The logical statement (p $$\to$$ q) $$\wedge$$ (q $$\to$$ ~p) is equivalent to

A
~p
B
p
C
q
D
~q
MHT CET Subjects
EXAM MAP