1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits{\frac{-\pi}{4}}^{\frac{\pi}{4}}(\sin x)^{-4} \mathrm{~d} x$ has the value

A
$\frac{-3}{2}$
B
$\frac{3}{2}$
C
$\frac{-8}{3}$
D
  $\frac{8}{3}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int_\limits0^{\frac{\pi}{2}}|\sin x-\cos x| d x$ has the value

A
$2 \sqrt{2}+1$
B
$2(\sqrt{2}+1)$
C
$2(\sqrt{2}-1)$
D
$2 \sqrt{2}-1$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{d x}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)}$ is equal to

A
$\frac{1}{5}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
B
$\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
C
$\frac{1}{20} \tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)$
D
$\frac{\pi}{40}$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\mathrm{I}=\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1+\mathrm{e}^{-x}} \mathrm{~d} x$ is equal to

A
$\frac{\pi^2}{4}-2$
B
$\frac{\pi^2}{4}+2$
C
$\pi^2-\mathrm{e}^{\frac{\pi}{2}}$
D
$\pi^2+e^{\frac{\pi}{2}}$
MHT CET Subjects
EXAM MAP