1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, $a \cos B=b \cos A, a \cos C \neq c \cos A$ then $\mathrm{A}(\triangle \mathrm{ABC})$ $\qquad$ sq. units.

A
$\quad \frac{c}{2} \sqrt{4 a^2-b^2}$
B
$\frac{c}{4} \sqrt{4 a^2-c^2}$
C
$\quad \frac{b}{2} \sqrt{4 b^2-c^2}$
D
$\frac{b}{4} \sqrt{4 b^2-c^2}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations if $\mathrm{a}=4, \mathrm{~b}=8, \angle \mathrm{C}=60^{\circ}$, then the value of $\angle \mathrm{B}$ and the ratio $\cos \mathrm{A}: \cos \mathrm{C}$ respectively are,

A
$\frac{\pi}{4}, 1: \sqrt{3}$
B
$\frac{\pi}{2}, \sqrt{3}: 1$
C
$\frac{\pi}{2}, 2: \sqrt{3}$
D
$\frac{\pi}{6}, \sqrt{3}: 2$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if $|\overline{\mathrm{BC}}|=8,|\overline{\mathrm{CA}}|=7,|\overline{\mathrm{AB}}|=10$ then the projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{AC}}$ is

A
$\frac{14}{85}$ units
B
$\frac{1}{85}$ units
C
$\frac{85}{14}$ units
D
$\frac{7}{85}$ units
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are such that they are the roots of the equation $x^3-11 x^2+38 x-40=0$ Then

$$ \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}= $$

A
$\frac{3}{4}$
B
1
C
$\frac{9}{16}$
D
$\frac{1}{16}$
MHT CET Subjects
EXAM MAP