1
MHT CET 2021 21th September Morning Shift
+2
-0

If $$p, q$$ are true statements and $$r$$ is false statement, then which of the following is correct.

A
$$(p \vee q) \vee r$$ has truth value $$F$$.
B
$$(\mathrm{p} \rightarrow \mathrm{r}) \rightarrow \mathrm{q}$$ has truth value $$\mathrm{F}$$.
C
$$(p \wedge q) \rightarrow r$$ has truth value $$T$$.
D
$$(\mathrm{p} \leftrightarrow \mathrm{q}) \rightarrow \mathrm{r}$$ has truth value $$\mathrm{F}$$.
2
MHT CET 2021 20th September Evening Shift
+2
-0

p : It rains today

q : I am going to school

r : I will meet my friend

s : I will go to watch a movie.

Then symbolic form of the statement "If it does not rain today or I won't go to school, then I will meet my friend and I will go to watch a movie" is

A
$$\mathrm{\sim(p\vee q)\to (r \vee s)}$$
B
$$\mathrm{(p\wedge q)\to (r \vee s)}$$
C
$$\mathrm{\sim(p\wedge q)\to (r \wedge s)}$$
D
$$\mathrm{(\sim p\wedge q)\to (r \wedge s)}$$
3
MHT CET 2021 20th September Evening Shift
+2
-0

Negation of $$(p \wedge q) \rightarrow(\sim p \vee r)$$ is

A
$$p \vee q \vee(\sim r)$$
B
$$p \wedge q \wedge r$$
C
$$\sim p \wedge q \wedge r$$
D
$$p \wedge q \wedge(\sim r)$$
4
MHT CET 2021 20th September Morning Shift
+2
-0

The negation of a statement 'x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A and x $$\in$$ B)' is

A
x $$\in$$ A $$\cap$$ B $$\to$$ (x $$\in$$ A or x $$\in$$ B)
B
x $$\in$$ A $$\cap$$ B and (x $$\notin$$ A or x $$\notin$$ B)
C
x $$\in$$ A $$\cap$$ B or (x $$\in$$ A or x $$\in$$ B)
D
x $$\notin$$ A $$\cap$$ B and (x $$\in$$ A and x $$\in$$ B)
EXAM MAP
Medical
NEET