1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$h(x)=\sqrt{4 f(x)+3 g(x)}, f(1)=4, g(1)=3, f^{\prime}(1)=3, g^{\prime}(1)=4$$, then $$h^{\prime}(1)=$$

A
$$\frac{5}{12}$$
B
$$\frac{12}{5}$$
C
$$\frac{-5}{12}$$
D
$$\frac{-12}{7}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$x=a \cos \theta, y=b \sin \theta$$, then $$\left[\frac{d^2 y}{d x^2}\right]_{\theta=\frac{\pi}{4}}=$$

A
$$2\left(\frac{a^2}{b}\right)$$
B
$$\sqrt{2}\left(\frac{\mathrm{a}^2}{\mathrm{~b}}\right)$$
C
$$-2 \sqrt{2}\left(\frac{b}{a^2}\right)$$
D
$$2 \sqrt{2}\left(\frac{\mathrm{b}}{\mathrm{a}^2}\right)$$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x=a \sin t-b \cos t, y=a \cos t+b \sin t$, then $y^3 \frac{d^2 y}{d x^2}+x^2+y^2=$

A
2
B
1
C
0
D
$-$1
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^{-1}\left[\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right]$, then $\frac{d y}{d x}=$

A
$\left(\frac{1}{4}\right) \frac{1}{\sqrt{x^2-1}}$
B
$\left(-\frac{1}{2}\right) \frac{1}{\sqrt{x^2-1}}$
C
$\left(-\frac{1}{2}\right) \frac{1}{\sqrt{1-x^2}}$
D
$\left(\frac{1}{4}\right) \frac{1}{\sqrt{1-x^2}}$
MHT CET Subjects
EXAM MAP