1
MHT CET 2021 21th September Evening Shift
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

A
$$\left(\frac{1}{2}\right)\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$$
B
$$\left[\begin{array}{ccc}\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
C
$$\left[\begin{array}{ccc}\frac{1}{2} & -1 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$$
D
$$\left(\frac{1}{2}\right)\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$$
2
MHT CET 2021 21th September Morning Shift
+2
-0

If $$F(\propto)=\left[\begin{array}{ccc}\cos \propto & -\sin \propto & 0 \\ \sin \propto & \cos \propto & 0 \\ 0 & 0 & 1\end{array}\right]$$, where $$\propto \in R$$, then $$[F(\propto)]^{-1}=$$

A
$$F(-\propto)$$
B
$$\mathrm{F}(2 \propto)$$
C
$$F(\propto)$$
D
$$F(3 \propto)$$
3
MHT CET 2021 21th September Morning Shift
+2
-0

If $$A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1\end{array}\right], \operatorname{adj} A=\left[\begin{array}{ccc}5 & x & -2 \\ 1 & 1 & 0 \\ -2 & -2 & y\end{array}\right]$$, then value of $$x+y$$ is

A
6
B
3
C
4
D
5
4
MHT CET 2021 21th September Morning Shift
+2
-0

$$\mathrm{A}^{-1}=\frac{-1}{2}\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right]$$, then $$2 A+I_2=\quad$$

where $$I_2$$ is a unit matrix of order 2

A
$$\left[\begin{array}{ll}5 & 8 \\ 1 & 2\end{array}\right]$$
B
$$\left[\begin{array}{ll}5 & 8 \\ 2 & 2\end{array}\right]$$
C
$$\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]$$
D
$$\left[\begin{array}{ll}5 & 8 \\ 2 & 3\end{array}\right]$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination