1
MHT CET 2021 24th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

IF $$A X=B$$, where $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$$, then $$2 x+y-z=$$

A
2
B
1
C
4
D
$$-$$2
2
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\text { If } A=\left[\begin{array}{ll} 2 & -2 \\ 2 & -3 \end{array}\right], B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text {, then }\left(B^{-1} A^{-1}\right)^{-1}=\text { ? }$$

A
$$A=\left[\begin{array}{ll}-2 & -2 \\ -3 & -2\end{array}\right]$$
B
$$A=\left[\begin{array}{cc}2 & 2 \\ -2 & -3\end{array}\right]$$
C
$$A=\left[\begin{array}{cc}3 & -2 \\ 2 & 2\end{array}\right]$$
D
$$A=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$$
3
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & a \\ 2 & 4 & 7\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}13 & 2 & b \\ -3 & -1 & 2 \\ -2 & 0 & 1\end{array}\right]$$ where matrix B is inverse of matrix A, then the value of a and b are

A
$$\mathrm{a}=-5, \mathrm{~b}=7$$
B
$$\mathrm{a=7, b=-5}$$
C
$$\mathrm{a=-7, b=5}$$
D
$$\mathrm{a}=5, \mathrm{~b}=-7$$
4
MHT CET 2021 24th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a $$3 \times 3$$ matrix $$\mathrm{A}$$, if $$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ccc}-10 & 0 & 0 \\ 0 & -10 & 2 \\ 0 & 0 & -10\end{array}\right]$$, then the value of determinant of A is

A
100
B
$$-$$1000
C
$$-$$10
D
20
MHT CET Subjects
EXAM MAP