1
MHT CET 2021 20th September Evening Shift
+2
-0

If $$A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$$ and $$B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$$, then $$(A B)^{-1}=$$

A
$$\left[\begin{array}{cc}2 & 7 \\ 3 & -1\end{array}\right]$$
B
$$\left[\begin{array}{cc}2 & -7 \\ -3 & 11\end{array}\right]$$
C
$$\left[\begin{array}{cc}2 & -3 \\ -7 & 11\end{array}\right]$$
D
$$\left[\begin{array}{cc}2 & 3 \\ 7 & -11\end{array}\right]$$
2
MHT CET 2021 20th September Morning Shift
+2
-0

$$A(\propto)=\left[\begin{array}{cc}\cos \propto & \sin \propto \\ -\sin \propto & \cos \propto\end{array}\right]$$, then $$\left[A^2(\propto)\right]^{-1}=$$

A
$$\mathrm{A}(\propto)$$
B
$$\mathrm{A}^2(\propto)$$
C
$$\mathrm{A}(-2 \propto)$$
D
$$\mathrm{A}(2 \propto)$$
3
MHT CET 2021 20th September Morning Shift
+2
-0

If inverse of $$\left[\begin{array}{ccc}1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6\end{array}\right]$$ does not exist, then $$x=$$

A
$$-$$3
B
2
C
3
D
0
4
MHT CET 2021 20th September Morning Shift
+2
-0

If $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 1 & 2 & 1 \cr 3 & 2 & 6 \cr } } \right]$$ and A$$_{ij}$$ are cofactors of the elements a$$_{ij}$$ of A, then $${a_{11}}{A_{11}} + {a_{12}}{A_{12}} + {a_{13}}{A_{13}}$$ is equal to

A
8
B
6
C
4
D
0
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination