For a $$3 \times 3$$ matrix $$\mathrm{A}$$, if $$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ccc}-10 & 0 & 0 \\ 0 & -10 & 2 \\ 0 & 0 & -10\end{array}\right]$$, then the value of determinant of A is
If $$A=\left[\begin{array}{ccc}5 & 6 & 3 \\ -4 & 3 & 2 \\ -4 & -7 & 3\end{array}\right]$$, then cofactors of all elements of second row are respectively.
Which of the following matrices are invertible?
$$\begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 2 & 3 \\ 10 & 15 \end{array}\right], \mathrm{B}=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{array}\right], \mathrm{C}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{array}\right], \mathrm{D}=\left[\begin{array}{lll} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 1 & 4 & 5 \end{array}\right] \end{aligned}$$
If $$A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$$ and $$A^{-1}=K A$$, then $$K$$ is