Consider the three statements
$\mathrm{p}: \forall \mathrm{n} \in \mathbb{N}, 10 \mathrm{n}-3$ is a prime number, when n is not divisible by 3.
$\mathrm{q}: \frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are the direction cosines of a directed line.
$\mathrm{r}: \sin x$ is an increasing function in the interval $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.
Then which of the following statement pattern has truth value true?
Truth values of $\mathrm{p} \rightarrow \mathrm{r}$ is F and $\mathrm{p} \leftrightarrow \mathrm{q}$ is F . Then the truth values of $(\sim p \vee q) \rightarrow(p \vee \sim q)$ and $(p \wedge \sim q) \rightarrow(\sim p \wedge q)$ are respectively
The statement $\sim(p \leftrightarrow \sim q)$ is
The proposition $(\sim p) \vee(p \wedge \sim q)$ is equivalent to