1
MHT CET 2023 9th May Evening Shift
+1
-0

A simple pendulum of length $$2 \mathrm{~m}$$ is given a horizontal push through angular displacement of $$60^{\circ}$$. If the mass of bob is 200 gram, the angular velocity of the bob will be (Take Acceleration due to gravity $$=10 \mathrm{~m} / \mathrm{s}^2$$ ) $$\left(\sin 30^{\circ}=\cos 60^{\circ}=0.5, \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2\right)$$

A
$$2 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
B
$$3 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
C
$$2 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
D
$$3 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
2
MHT CET 2023 9th May Evening Shift
+1
-0

A particle at rest starts moving with constant angular acceleration $$4 ~\mathrm{rad} / \mathrm{s}^2$$ in circular path. At what time the magnitudes of its tangential acceleration and centrifugal acceleration will be equal?

A
0.4 s
B
0.5 s
C
0.8 s
D
1.0 s
3
MHT CET 2021 21th September Evening Shift
+1
-0

The angle of banking '$$\theta$$' for a meter gauge railway line is given by $$\theta=\tan ^{-1}\left(\frac{1}{20}\right)$$. What is the elevation of the outer rail above the inner rail?

A
$$20 \mathrm{~cm}$$
B
$$10 \mathrm{~cm}$$
C
$$0.2 \mathrm{~cm}$$
D
$$5 \mathrm{~cm}$$
4
MHT CET 2021 21th September Morning Shift
+1
-0

A particle moves in a circular orbit of radius '$$r$$' under a central attractive force, $$F=-\frac{k}{r}$$, where $$\mathrm{k}$$ is a constant. The periodic time of its motion is proportional to

A
$$r^{\frac{1}{2}}$$
B
$$\mathrm{r}^{\frac{2}{3}}$$
C
$$r$$
D
$$r^{\frac{3}{2}}$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination